Hawaii-Born Pill: The Next Wonder Drug?

(page 1 of 4)

Photography by Thinkstock.com

A Hawaii biotech startup has synthesized a version of astaxanthin, a drug that might become a powerful treatment for all kinds of inflammatory illnesses ranging from heart disease to diabetes. But first, the company must navigate the possibilities and challenges posed by FDA-required testing, venture capital, Big Pharma and a reverse merger. Success isn’t inevitable, because, as the founder acknowledges, even good ideas can fail.

For centuries, people around the world knew that chewing on the bark of certain willow trees could ease the pain of a toothache or a migraine. By the mid-19th century, scientists in France and Germany had isolated the chemical, salicylic acid, responsible for willow bark’s analgesic and anti-inflammatory qualities, but it proved too harsh on the stomach to be of real medicinal value.

Then, in 1897, a German chemist named Felix Hoffmann synthesized a purer, less irritating form of the natural compound. This new chemical, acetylsalicylic acid – better known as aspirin – became the best-selling drug of all time and is still the foundation of the multibillion-dollar corporation we now know as BayerAG.

In a modest way, a similar story may be under way in Hawaii. Twelve years ago, scientists at Cardax, a small biotech company nestled in the Manoa Innovation Center, synthesized a form of astaxanthin, a naturally occurring chemical found in shellfish and micro-algae and, like aspirin, a powerful anti-inflammatory. The natural form of astaxanthin is already a well-known dietary supplement – sometimes called a nutraceutical – believed by many to reduce the threat of heart disease. Kona-based Cyanotech, for instance, is a major manufacturer. But CDX085 – the latest in a suite of similar Cardax-patented compounds – is so much purer and more potent than natural astaxanthin, and the number of potential uses so much larger, that Cardax’s team believes it may become the next billion-dollar drug. They could be right.

Despite all this promise, Cardax’s path to success has been long and complicated and is far from over. Like so many startups in the life sciences in recent years, Cardax has been in a life-or-death struggle to find enough money to continue to operate.

For the company to follow the traditional developmental route for startup drug companies, investors may have to pony up more than $100 million to conduct the expensive Phase-2 and Phase-3 clinical trials necessary for FDA approval of a pharmaceutical drug. So there are still many hurdles for Cardax.

But, last April, the German pharmaceutical giant BASF finally exercised a longstanding option to become the exclusive licensee of Cardax’s nutraceutical. Then, in October, Cardax announced it would use an arcane device called a reverse merger to go public. That succeeded in attracting millions of dollars in new investment for the company, setting in motion a plan to have a still unnamed nutraceutical product on the market by the end of 2014. So the company may finally have turned the corner.

All of which makes the ongoing saga of Cardax and its promising family of anti-inflammatory compounds a good introduction to the current state of biotechnology, venture capital and the evolving world of drug discovery.

Body Fights Back

To make sense of the Cardax story, you have to understand a little about inflammation. Almost all chronic diseases are inflammatory, including heart disease, osteoarthritis, diabetes and even some cancers. But inflammation itself isn’t a disease. It’s the body’s natural response to heal damaged tissue and defend against unknown pathogens. The redness and swelling associated with an infected cut or a case of strep throat is just the body’s attempt to isolate that infection and promote healing. In a tip of the hat to Celsus, the Roman encyclopedist, medical science still characterizes inflammation by the four cardinal signs: tumor, rubor, calor and dolor –swelling, redness, heat and pain. (The Greek physician Galen, no poet, added a fifth characteristic: “functio laesa” or loss of function.) Inflammation may cause discomfort, but it’s an essential function of our immune system.

There are two kinds of inflammation, though. Acute inflammation, despite the name, is the normal swelling and pain associated with minor infections. Physiologically, though, it’s astonishingly complex. When tissue cells are damaged, they release histamines and other chemical signals that mediate the body’s inflammatory response. This causes cytokines, small proteins in the bloodstream, to induce a dilation of the veins, bringing more blood to the injury. That makes an infected cut turn red.

The dilated veins also become more porous, which allows plasma to leak through the vascular walls into the surrounding tissue. That causes swelling. Along with the plasma comes a flood of cells from the immune system called leukocytes, including bacteriophages that directly ingest bacteria, and enzymes that attack the structure of the pathogen. As the infection or injury abates, the body returns to normal. This type of acute inflammation is typically brief and effective.

But the inflammation associated with chronic disease is a different story. Rather than stem from a specific event, like a wound, chronic inflammation appears to be the result of the low-grade irritation of whole bodily systems, such as the cardiovascular system in the case of heart disease or the respiratory system in the case of asthma. Similarly, chronic inflammation isn’t a reaction to a specific pathogen; rather, it seems to arise from more or less permanent stimuli, such as smoking or chemicals in the environment. That may be why diseases associated with chronic inflammation are so much more prevalent today than in the past.

Modern medicine has done a good job dealing with the infections and communicable diseases that used to be the primary causes of death. In 1850, the life expectancy of an American at birth was only 38 years – largely because of the high level of infant mortality associated with childhood diseases. But, because of the advent of antibiotics and vaccinations in the 20th century, the average life expectancy today is over 74 years. As we’ve begun to live longer, though, chronic diseases have overtaken infections as the leading causes of death.

It’s unclear though, whether inflammation is a cause or an effect of chronic disease. “That depends,” says Deepak Bhatt, executive director of cardiovascular programs at Brigham and Women’s Hospital in Boston and a member of Cardax’s scientific advisory board. “For arthritis, I think it’s largely the cause of disease, because inflammation in the joints can cause pain, damage or even disfigurement in the joint space. In that case, an anti-inflammatory drug would be expected to directly influence the disease process. In cardiovascular disease, it’s a little less clear, but I think the majority of cardiovascular experts think there’s a causal relationship between inflammation and the disease, as opposed to inflammation being some kind of ‘innocent by-stander’ effect.

“My own feeling is it’s probably a little of both. There are cases where smoking or high cholesterol, for example, can damage the inner lining of the arteries – what we call the endothelium. That can certainly lead to inflammation in the arteries and the accumulation of plaque, which can cause heart attacks. But there are also people who are exposed to all those risk factors but exhibit no signs of inflammation or cardiovascular disease. So, sometimes inflammation may be the result of cardiovascular disease, and there are cases where inflammation is the primary bad actor.”


Don't Miss an Issue!
Hawaii Business,March